Skip to content

The 1984 Mauna Loa Eruption and Our Understanding of Lava Flows

January 18, 2013

These vents on Mauna Loa’s northeast rift zone were the primary source of lava during the 1984 eruption. Note person in lower left for scale. Photo was taken on March 26, 1984. (Hawaiian Volcano Observatory, USGS)

The following is this week’s edition of “Volcano Watch” from the Hawaiian Volcano Observatory (USGS):

In recognition of Volcano Awareness Month (January 2013), this column explores some of the most scientifically important eruptions to have occurred in Hawaiʻi since HVO’s founding in 1912. Last week, we discussed the 30-year-long (and still going strong) Puʻu ʻŌʻō eruption. This week’s focus is on the 1984 eruption of Mauna Loa.

The eruption began at about 1:30 a.m., HST, on March 25, 1984, after only a few hours of precursory seismic activity. The initial curtain of fire occupied the entire summit caldera and eventually migrated into the upper southwest rift zone. Within a few hours, however, the activity made a U-turn—magma began migrating into the northeast rift zone. By 5:00 a.m., the northeast rift zone vents had become the focus of eruptive activity. The eruption lasted for three weeks, feeding lava flows that reached within 6.5 km (4 mi) of the outskirts of Hilo.

Hawaii Volcanoes National Park. 1984 eruption of Mauna Loa Volcano. Hawaiian Volcano Observatory geologists at lava fountains. Helicopters provided access to remote areas of the eruption and were essential for safety. Photo by R.B. Moore, 1984. (Hawaiian Volcano Observatory, USGS)

The 1984 activity was the first (and, so far, the only) Mauna Loa eruption to have been well monitored scientifically (which is why it is the only Mauna Loa eruption that we will cover in this month’s series of articles). HVO scientists were able to reach the northeast rift zone vents within hours of the eruption’s onset and collected detailed observations of lava flow activity over the ensuing three weeks. The work was motivated by the need to assess the threat to Hilo but resulted in a wealth of scientific insights and a better understanding of how lava flows work.

Mauna Loa eruptions differ from those of Kīlauea because they are usually much more vigorous. The eruption rate of lava during typical Mauna Loa eruptions is generally several times that of a typical Kīlauea eruption. In fact, the amount of lava emitted during Mauna Loa’s 22-day-long eruption was equivalent to about two years of output from Kīlauea!

During the eruption, HVO and collaborating scientists made repeated observations at points along the lava channels that fed the flows moving toward Hilo. Data collected included lava velocity, temperature, density, chemical composition, eruption rate, channel width, and, most importantly, changes in these parameters over time. In fact, volcanologists from all over the world descended on the Big Island to study the eruption (lots of tourists showed up too!).

What resulted from this intensive study was an understanding of how channelized lava flows grow and what factors control flow morphology, including the transition from pāhoehoe to ʻaʻā. In fact, the comprehensive data collected from lava flows during the 1984 Mauna Loa eruption and the resulting insights into the behavior of ʻaʻā flows, especially, have been used to construct models that forecast how long a lava flow will extend and what path it will follow. The 1984 Mauna Loa lava flows now serve as a standard for the interpretation of older flows and for the development of flow models. It seems fitting that an eruption that posed such a significant threat to Hilo now provides the data needed to help better evaluate—and protect against—lava flow threats in Hawaiʻi and elsewhere around the world.

Next week, in the third part of our series on scientifically important eruptions in Hawaiʻi, we will focus our attention the 1969–1974 eruption of Mauna Ulu, on Kīlauea’s east rift zone.

Meanwhile, check out the Volcano Awareness Month activities that HVO has scheduled for this week by visiting our Web site ( or by calling 808-967-8844.

This photo, looking south, shows lava spilling from the small, perched lava lake on the northeast side of Puʻu ʻŌʻō’s crater floor (Jan 17, 2013). The rim on the east side of the crater, in the background, has been nearly completely buried and is no longer discernible. (Hawaiian Volcano Observatory, USGS)

Kīlauea Activity Update

A lava lake within the Halemaʻumaʻu Overlook vent produced nighttime glow that was visible from the Jaggar Museum overlook and via HVO’s Webcam during the past week. The lake reached to within 26 m (85 ft) of the floor of Halemaʻumaʻu before dropping slightly back down. This is not as high as the level reached during October 2012, but it is very close. There were several collapses from the rim and walls of the Overlook crater with the high levels. The Overlook crater is now 160 m (525 ft) wide from the viewpoint of the Jaggar overlook, and is about 200 m (656 ft) long.

On Kīlauea’s east rift zone, surface lava flows remain active near the coast and are feeding weak ocean entries scattered along the sea cliff on both sides of the Hawaiʻi Volcanoes National Park boundary. Within Puʻu ʻŌʻō, the lava level has reached to a high level and flows have been spilling from the crater onto the northeastern flank of the Puʻu ʻŌʻō cone. This is the highest level of activity at Puʻu ʻŌʻō since September 2011.

Eruptive activity in Puʻu ʻŌʻō has picked up over the past week. Lava flows erupting sporadically from several places continue to fill the crater and occasionally spill out onto the east flank of Puʻu ʻŌʻō. This view, looking southwest, shows new lava from active and recent flows on Puʻu ʻŌʻō’s eastern flank. Many of the flows come directly from the small perched lava lake on the northeast side of the crater floor, visible at the center of the photo. (Hawaiian Volcano Observatory, USGS)

There were four felt earthquakes in the past week on the Island of Hawaiʻi. On January 13, 2013, at 4:28 a.m., a magnitude-3.2 earthquake occurred 4 km (3 mi) southeast of Kīlauea summit at a depth of 3 km (2 mi). On January 15 at 5:15 p.m., a magnitude-2.7 earthquake occurred 4 km (3 mi) south of Volcano at a depth of 3 km (2 mi). Later that same day at 11:50 p.m., a magnitude-2.1 earthquake occurred 4 km (3 mi) west of Kailua-Kona at a depth of 10 km (7 mi). On January 16 at 10:33 a.m., a magnitude-2.6 earthquake occurred 13 km (8 mi) south of Kapoho at a depth of 10 km (7 mi).

Visit for detailed Kīlauea and Mauna Loa activity updates, recent volcano photos, recent earthquakes, and more; call (808) 967-8862 for a Kīlauea activity summary; email questions to

2 Comments leave one →
  1. Anonymous permalink
    February 11, 2015 3:26 pm

    For me it was okay but you should have information on what did the eruption destroy like homes, schools, stores, and other stuff. That is what I really need. PLEASE!

  2. Anonymous permalink
    February 11, 2015 3:28 pm


    I am sad because u didn’t put that type of info. :(

Leave a Reply

Fill in your details below or click an icon to log in:

Gravatar Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


Get every new post delivered to your Inbox.

Join 237,989 other followers

Build a website with
%d bloggers like this: