Skip to content

Is Mauna Loa Due to Erupt Soon?

March 21, 2014

Erupting vents on Mauna Loa’s northeast rift zone near Pu‘u‘ula‘ula (Red Hill) on Mar. 25, 1984, sent massive ‘a‘ā lava flows down the rift toward Kūlani. This month marks the 30th anniversary of the Mauna Loa’s most recent eruption. (USGS)

The following is this week’s edition of the USGS Hawaiian Volcano Observatory‘s Volcano Watch:

March 25 is the 30th anniversary of the most recent eruption of Mauna Loa, Hawaiʻi island’s largest volcano. According to historical records, Mauna Loa has erupted 33 times since 1843, an average rate of 1 eruption every 5 years. If we look further back into Mauna Loa’s eruptive history, over the last 3,000 years, it has erupted about once every 6 years.

These statistics might lead one to believe that the world’s largest active volcano is overdue to erupt. We treat all volcanic hazards as random events; therefore, each event has no influence over the occurrence of the next event. Thus, even if a great deal of time has elapsed since the last eruption, it does not mean that Mauna Loa is due to erupt again soon. Furthermore, with random behavior, even if an eruption occurs this year, there is a chance that an eruption may still occur next year.

We know enough about Hawaiian volcanoes to recognize that the theorem is not 100 percent valid for Mauna Loa, because, once the volcano has erupted its stored magma, it needs time to fully replenish itself.

The Volcanoes of Hawai’i Island. (USGS)

What are some of the other reasons why Mauna Loa has not erupted for some time? Perhaps it is a dying volcano, moving away from the hot spot and nearing its demise. Given the long-term eruption rate of 1 event every 6 years for the past 3,000 years and 1 every 5 years for the last roughly 170 years, it hardly seems likely that the volcano is on its deathbed!

Some people might think that the ongoing eruptions at Kīlauea’s summit and East Rift Zone are robbing Mauna Loa of magma. We know that Kīlauea and Mauna Loa lavas have different abundances of chemical constituents and are fed from different regions of the hot spot. The amount of lava erupted by the volcanoes—a tiny fraction of the magma supplied by the hot spot—is more than enough to feed eruptions at both volcanoes simultaneously.

Another reason proposed for the dearth of eruptions is that the great exhalation of gas from Kīlauea somehow decreases the internal pressure within Mauna Loa. The gas hypothesis is analogous to the flawed lava-robbing hypothesis: the volcanoes have different plumbing systems, and degassing at one volcano has no effect on the other.

Looking over the last 170 years, researchers have noted that eruptive periods at Kīlauea and Mauna Loa are inversely correlated. Using geologic mapping and C-14 dating, we can tell that, for the past 2,500 years, when activity at one volcano is elevated, the other is relatively quiescent.

What is the reason for this apparent inverse level of activity between the volcanoes? We already discounted decreased magma supply, magma piracy, and reduced pressure from degassing. Another hypothesis involves buttressing effects, when one volcano pushes against the other and causes pressure changes within the other. Researchers have concluded that Kīlauea’s pressing against Mauna Loa would have minimal effect on the larger edifice, but Mauna Loa’s pushing against Kīlauea could increase pressure within the smaller volcano. An analogous study also looked at changing stress in the magma source region and how it impacts magma supply.

Simplified map of Mauna Loa on the Island of Hawai`i showing the historical lava flows that cover 806 square kilometers, nearly 16 percent of the volcano’s surface. Dates are provided for only 19 of the volcano’s 33 historical eruptions. (USGS)

A recent hypothesis proposes that eruptive activity at one volcano affects eruptions at the other due to factors that include magma supply, volcanic plumbing, magma pressure, and flank motion (deformation). It is based on the notion that the current east rift zone eruption of Kīlauea is driving the south flank seaward, leaving Mauna Loa’s southeast flank unbuttressed. Consequently, Mauna Loa’s flank would move eastward, resulting in the widening of the magma storage centers, decreased magma pressure, and, therefore, diminished ability to erupt.

With the recent unprecedented upgrades to our monitoring capabilities, including seismic equipment and the addition of GPS stations, tiltmeters, gas sensors, and Webcams, we can better investigate the complex interactions within and between the volcanoes. The improved capabilities will increase our understanding of how volcanoes work and enhance our ability to forecast eruptions. The residents of the Island of Hawaiʻi can rest assured that we are diligently monitoring Mauna Loa and are better equipped to inform you if activity at the volcano changes.

Visit our Web site ( for detailed Kīlauea and Mauna Loa activity updates, recent volcano photos, recent earthquakes, and more; call (808) 967-8862 for a Kīlauea activity summary; email questions to

One Comment leave one →


  1. Mauna Loa's 30th Anniversary! | 5th Street Ohana Hawaii

Leave a Reply

Fill in your details below or click an icon to log in:

Gravatar Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


Get every new post delivered to your Inbox.

Join 232,880 other followers

Build a website with
%d bloggers like this: